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Real and quasi-experiments in capture-
recapture studies

CAR L JAMES SCHWARZ, Dept of Statistics and Actuarial Science, Simon Fraser

University, B urnaby, Canada

abstract The three key elements of experimental design are randomization, replication,

and variance identi ® cation and control. Capture- recapture experiments usually pay

suý cient attention to the ® rst two elements, but often do not pay suý cient attention to

sources of variation. These include blocking factors and di þ erent sizes of experimental

units. B y casting capture- recapture studies in an experimental design framework, the

various roles of these sources of variation become clear and the sources that are pooled

when these experiments are analysed using existing software is also clear. This formulation

also shows that care must be taken with pseudo-replication and diþ erent sized experi-

mental units.

1 Introduction

The use of capture- recapture methods does not end with the estimation of survival,

abundance, or density. Questions concerning natural or human-induced changes

in these parameters often require quanti® cation, often via hypothesis testing or

estimation of the diþ erence among various group-speci® c parameters.

Field studies can be broadly classi ® ed into three categories:

(1) observational studies where randomization is restricted solely to selecting

animals from the population of interest and no manipulation of experimental

conditions is performed, e.g. a comparison of male and female survival rates.

Observational studies can produce inference of various types based on a

prior i hypotheses or based on hypotheses developed after the fact. Although

the strength of inference is limited in either case by the lack of control over

the system, the former approach is stronger than the latter. These will not

be discussed in this paper.
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(2) Environmental impact or assessment studies where site speci® c comparisons

between a non-random assignment of impact and possible randomly selected

control sites are required, e.g. the impact of an oil spill upon survival rates.

(3) Manipulative studies where the experimenter randomly assigns population

units to treatment and control groups, e.g. a comparison of survival rates

among groups subject to diþ erent doses of lead.

Fisher (1935) outlined three principles that are essential for good experimental

design: replication, randomization, and variance-reduction (blocking). Surprisingly,

only the ® rst two have received much attention in the capture- recapture literature

and the `state of the art’ in using experimental design in capture- recapture studies

is surprisingly primitive.

Randomization is the key to representativeness. A random selection of animals

that are tagged is what ensures that estimates derived from the experiment can be

extrapolated to the population as a whole. This is often glossed over in many CJS

experiments as tagged animals are often obtained using a convenience sample from

the population without much thought to randomly selecting them from the entire

population at risk. However, proper random sampling will be crucial if abundance

or population growth is to be estimated, as a key assumption is that animals are

captured at random from the entire population of interest.

Replication, or sample size, controls precision. Through simulation studies it is

relatively easy to determine the necessary sample size to obtain a speci® ed precision

in the estimates. The danger in ecological experiments is pseudo-replication

(Hurlbert, 1984) where the observational unit (e.g. bird) diþ ers from the experi-

mental unit (habitat type) and inference can be limited.

Blocking, or variance reduction and control, is infrequently seen in capture-

recapture studies. In this context, `variability’ refers to the variation in survival and

capture probabilities from all sources, not just from the binomial response of an

animal to a probabilistic survival event.

Much of classical experimental design deals with issues of variance decomposi-

tion, reduction, and controlÐ it is somewhat surprising that this has not permeated

the capture- recapture ® eld. Many studies still continue to pool over various sub-

groups not formally part of the analysis framework, e.g. pooling over batches of

releases Ð yet recognize that this may not be fully successful as the variance in¯ ation

factor is often used to adjust the ® nal estimates for over or underdispersion.

Finally, classical experimental design also carefully examines issues as to diþ erent

sizes of experimental units; the distinction between experimental and observational

units; and ® xed versus random eþ ects. These distinctions are absent from most

capture- recapture studies. Most studies assume there is but a single size of

experimental unitÐ the animalÐ and treat the experimental and observation unit

as identical. Random eþ ects are starting to appear, but only in restrictive ways as

variation over time. Clearly, further research into this topic needed.

In the remainder of this paper, I will examine assessment and manipulative

experiments. I will focus upon the analysis of survival ratesÐ similar comments

also apply to the analysis of capture probabilities. Although my ® nal conclusions

may seem pessimistic, researchers should not shy away from formal experimenta-

tion. The experience in medical studies has shown that planned, randomized

experiments are the key to inferring causation (Hill, 1971). Observational studies

have limited inferential ability in the face of multi-factor, often highly interrelated

study variables.
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2 Some general comments

2.1 Terminology

The literature in experimental design is fairly standardized and I will use it through

out this paper.

A factor is a condition that is either under the control of the experimenter (e.g.

dose) or is simply observed (e.g. gender). Each factor has two or more values

called levels. For example, the factor gender has two levels, M and F. The particular

set of levels that is attached to an observational unit is called a treatment, e.g. if

there are two factors (dose and gender), each at two levels (H versus L dose; M

versus F), then the treatments that may occur in the experiment are the combina-

tions of dose and gender, e.g. HF, HM, LF, LM.

All experiments take place by assigning factor levels to experimental units.

Measurements are taken on the observational units. A common error is the failure

to distinguish between the experimental unit and the observational unit. This can

lead to sub-sampling designs (multiple observations are taken from the same

experimental unit) and pseudo-replication (Hurlbert, 1984) where `replicates’

taken in a study are simply sub-samples from the true larger experimental unit.

A simple example to illustrate the diþ erence between the experimental and

observational unit is an experiment done on ® sh held in tanks. The experiment is

to investigate the e þ ect of various chemicals upon the growth of ® sh over time.

Fish are individually marked, weighed, randomly assigned to tanks (ten per tank),

and then chemicals are added to the tanks (two tanks each for the chemical and

the control group). At the completion of the experiment, the individual ® sh are

again weighed, and the increase in weight recorded for each ® sh. It is tempting to

believe that the experiment has 20 replicates for each treatment (ten ® sh in each

of two tanks), but in fact, the treatment (the chemical or control) was applied to

the tank not to individual ® sh, and there are only two replicates. The analysis of

variance table for this experiment would look like:

Source Df Error term

Treatment 1 tank(treatment)

tank(treatment) 3 ® sh(tank 3 treatment)

® sh(tank 3 treatment) 36

and the test for a treatment eþ ect would involve the ratio of ms(treatment) to

ms(tank(treatment)). The individual ® sh are observational unitsÐ treating the

individual ® sh as the experimental unit will typically lead to an increase Type I

error rates as the variation among tanks is usually much greater than among ® sh.

2.2 Structure

Any experimental or assessment design has three embedded, independent,

structuresÐ the treatment structure (i.e. what combinations of treatment levels are

present in the experiment); the experimental unit structure (i.e. what are the

various experimental and observational units); the randomization structure (i.e.

how are factors assigned to experimental units). Many textbooks on experimental

and assessment designs often fail to distinguish among these three structures by

providing a cookbook approach that wraps all three aspects under one name.

By far the most common experimental design situation involves the factorial

treatment structure where every treatment combination occurs in the experiment.
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In the case of many factors, this may lead to an inordinate number of treatments,

so fractional factorial designs (where only certain treatment combinations appear)

are used. Most experiments also profess to conduct complete randomization of

factors to experimental units. Closer reading of these papers often shows that, in

fact, this did not occur and often systematic or haphazard allocation schemes are

used. For the purposes of this paper, I will assume that complete randomization

occurred.

2.3 Treatment of time eþ ectsÐ repeated measures?

Most capture- recapture experiments treat `time’ as a factor with several levels. By

de® nition, capture- recapture studies are longitudinal studies, i.e. the same animal

is followed (imperfectly) over time. In the traditional experimental design literature,

these are often referred to as repeated measure studies and there are various ways

to treat this `repeated factor’ . The simplest is to simply treat time as any other

factor and construct an analysis of variance table accordingly. However, unless the

covariance structure of the repeated measure takes a special form (e.g. compound

symmetric), the F-tests for the repeated factors do not follow the nominal F-

distributions. Consequently, either corrections to the standard F-tests (Green-

house- Geisser or Huynh- Feldt) are performed or multivariate tests are conducted.

It is `unusual’ to think of the capture history of an animal as representing

repeated measurements on the same animal. In the standard likelihood theory

(Lebreton et al. 1992), the likelihood factors into pieces representing the probability

of next capture conditional upon each release of the animal. These are often treated

as independent events, even though a particular animal could be `reused’ several

times in the likelihood function. In addition, the fate of the animal is unknown

after its last capture Ð but this is analogous to `missing values’ in an experimental

design framework.

Consequently, in the remainder of the paper, I will view the capture history of a

animal as representing repeated measurement on the survival of the animal to

make it easier to cast capture- recapture experiments into an experimental design

framework.

2.4 Fixed versus random eþ ects

When considering factors in an experiment, a distinction is made between ® xed

and random eþ ects. A ® xed eþ ect is one where the levels present in the experiment

are the only ones of interest; inference will only be about these levels; and if the

experiment were to be repeated the same levels would be re-used. Examples of

® xed eþ ects are gender, dose of chemical, type of band applied, etc. A random

factor has levels in the experiment that were chosen, at random, from a larger set

of levels; inference is to this larger set of levels; and if the experiment were to be

repeated, a diþ erent set of levels would typically be used. Examples of random

eþ ects are often location, sites, etc.

Inference for these two types of factors is quite diþ erent. For ® xed eþ ects,

interest typically lies in how the levels aþ ect the mean response; for random eþ ects,

interest lies in the overall mean response and the size of the variation of the level

eþ ects for that factor. For example, for ® xed eþ ects, the size of the diþ erence

between the two means is estimated while for random eþ ects, the variance of the

eþ ects (variance component) is estimated.
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3 Assessment studies

In assessment studies, site speci® c comparisons between a non-random assignment

of impact and possible randomly selected control sites are required, e.g. the impact

of an oil spill upon survival rates.

3.1 Inter vention (monitoring) designs

The simplest design is often used in monitoring studies. It consists of simply

monitoring the parameter of interest over time (survival or population size) and

examining whether the level has changed from before to after an intervention. The

design is often an `unplanned’ experiment in that the intervention may be accidental

(e.g. oil spill), but it is often used in environmental impact studies where the

intervention is planned, e.g. the construction of a new power plant. In a classical

experimental design analysis, estimates would be obtained at every time point

before and after the study and a `t-test’ would be used to compare the population

parameters before and after the intervention. This `simple’ analysis ignores any

covariances among the estimates that may be obtained from a multi-year longi-

tudinal study and typically will underestimate the variability of the estimates that

will result in a lower p-value that would be warranted and an increased Type I

error rate. Time series intervention analyses are more complex, model-based

approaches to try and account for this time covariance.

In the capture- recapture context, the modelling is done `internally’ , i.e. a linear

model is developed that typically includes models survival before and after the

intervention, and standard likelihood ratio tests, or the AIC method is used to

determine if a simpler model without intervention eþ ects is tenable. These linear

models can be quite complicated and they can also be used to account for existing

trends over time, where a relevant test is to examine if the slope has changed

between before and after the interventionÐ a simple example of the analysis of

covariance.

An example of this type of study is found in Piper et al. (1999) where the

intervention consists of supplemental feeding of the Cape Griþ on vulture from

1984 onwards. The authors ® t a series of Cormack- Jolly- Seber (CJS) models that

included the intervention and found that survival increased across the intervention.

Aebischer (1995) investigated the association between changes in hunting regula-

tions and subsequent annual survival of pigeons and doves. Lebreton et al. (1992)

also illustrate the analysis of unplanned interventions (¯ oods) upon the survival of

European dippers using similar methods.

As Green (1979) pointed out, the fundamental ¯ aw with these designs is that

any changes in the parameters are totally confounded with temporal e þ ects, i.e.

the change in survival may have occurred regardless of any intervention (planned

or unplanned). Another potential problem is that capture- recapture methods

cannot distinguish between experiments where the animals involved are a diþ erent

set before and after the intervention, or they are the same set of animals simply

followed over time. Classical experimental design carefully distinguishes between

the independent sample and the paired sample experiments but the likelihood

theory for CJS models makes no distinction. For example in the Piper et al. (1999)

study, only the survival of ® rst year birds was of interest, which essentially made

this an unpaired experiment and the comparison is of diþ erent cohorts of birds.

Aebischer’ s (1995) study involved following cohorts over long periods of time,
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which essentially made this a paired experiment. The disadvantage of a paired

experiment, is that survival after the intervention is of course conditional upon

survival prior to the intervention. Perhaps, just by chance, heterogeneity in survival

rates among birds leads to a higher observed mortality before the intervention took

place. Such an increase in survival would be consistent with the heterogeneous

survival models of Burnham & Rexsted (1993).

3.2 B ACI designs

To resolve the confounding of the intervention and temporal eþ ects, a class of

experimental designs has evolved that go under the rubric of `Before-After-Control-

Impact (BACI)’ designs (Green, 1979; Underwood, 1993, 1994; Stewart-Oaten &

Murdoch, 1986).

In these designs, studies are carried out at both control and impacted sites, and

these studies commence before the planned intervention and continue after the

impact. In the simplest design, a single control and single impact site are monitored

over time. It is now the change in the diþ erences between the mean response at

the two sites between the before and after points (i.e. an interaction between site

and time eþ ects) that provides evidence for an impact. This comparison can again

be easily performed by using a linear model approach to tagging studies.

There are two `major’ problems with the simple BACI design. First, in the

simplest design, measurements are taken at each site at a single time point before

and after the intervention. There may be multiple measurements at this single time

point, which allows estimates of the precision of that particular measurement to be

derived. However, natural variation over time in the parameters at each site may,

by chance, lead to cases where the observed diþ erence is certainly within normal

bounds. The design is unable to detect this as, without any replication over time,

no estimate of variation over time is possible. This is resolved by taking a time

series of measurements at both sites both before and after the impact and looking

at the diþ erence in the average response before and after the experiment. As

capture- recapture studies are usually longitudinal, this will be a natural aspect of

the design.

Second, this design is unable to extrapolate any `eþ ect’ beyond that which

occurred between two speci® c sites. Again, no estimate of site-to-site variation is

obtainable and this is an example of pseudo-replicationÐ the animals in the study

are the observational units and not the experimental units. The enhanced-BACI

design was developed in response. As it is unlikely that the intervention site can be

replicated, the usual procedure is to use replicated control sites with the implicit

assumption that the variation among replicated impacted sites is the same as among

control sites.

The analysis of an enhanced-BACI design is fairly straightforward in standard

experimental designs. The analysis of variance table would take the form:

Source `Error term’

Treatment site(treatment)

site(treatment)

Time Residual

Time 3 treatment Residual

Residual 5 time 3 bird(treatment)
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which to a classical experimentalist, looks like a `split-plot-in-time’ design. Alterna-

tively, the diþ erence in response before and after the intervention is found for each

site. This reduces the data to a set of single numbers Ð one of which belongs to the

impacted site and the others to the control site Ð and a two-independent-samples

test (e.g. a t-test) is performed. Both analyses are equivalent, except the latter

analysis `averages’ out any time and interaction tests.

In contrast, the CJS models make no distinction between the experimental unit

(the site) and the observational unit (the bird). Both the eþ ects of time and of

treatment are tested using the same residual deviance. This will be examined in

more detail later in this paper.

4 Some common experimental designs

As noted earlier, experimental designs are among the most convincing ways of

inferring causation mechanisms as the separate eþ ects of designed factors can be

extracted from the combined eþ ects of factors in observational studies. In this

section, I will review several of the common experimental designs that have been

used in the capture- recapture literature.

4.1 Factorial treatment structure; single size of e.u.; complete randomization

This is the simplest possible experimental design for a capture- recapture study. In

this study, treatments are randomly assigned to animals (the experimental unit) at

the time of initial capture and the subsequent survival rates of the treatment groups

are compared over time. In most cases, there is a single factor, but this description

is completely general and also applies to multiple factor designs, i.e. in a two factor

design with a and b levels respectively, then all ab treatment combinations are

completely randomized to animals before release.

There are many examples of this type of studies. For example, Samuel et al.

(1999) investigated the eþ ect of inoculations against avian cholera upon the survival

rate of Lesser Snow Geese. As geese were captured, they were randomly assigned

to either the treatment group (given an inoculation) or the control group (no

inoculation), banded, and released. Resightings took place over a number of years.

As before, it is helpful to cast this experiment into the traditional ANOVA

framework where the various sources of variation are extracted and the expected

mean-squares are used to determine how certain hypotheses are to be tested.

A classical experimentalist would recognize that there are two sources of variation

in the individual survival rates over timeÐ that of the individual bird assigned to

each treatment group, and the variation over time within each bird. The model

under a classical experimental design approach is:

u i jk 5 l + s i + b i j + tk + s tik + ei jk

where bi j and ei jk are the (random) bird and residual random variation.

In most CJS analyses, the analyst would write a model for survival as

u *i jk 5 l + s i + tk + s tik + e*i jk

The discrepancy between the two approaches is the explicit recognition of a `bird’

eþ ect over and above any residual variation.
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The `standard’ ANOVA table for the classical experimental design would be

structured as:

Source `Error term’

Treatment Bird(treatment)

Bird(treatment)

Time Residual

Time 3 treatment Residual

Residual 5 time 3 bird(treatment)

Here, it is explicit that the test for treatment relies upon a diþ erent error term

from the test for time and time 3 treatment interactions.

When using MARK or POPAN or SURGE to analyse this experiment, all sources

of variation are combined in one residual deviance. Going back to the ANOVA table,

a single `error term’ would be appropriate for all model tests if, in fact, there was no

heterogeneity among birds within each treatment group. If the heterogeneity among

birds can be `explained’ by other factors such as gender, then these can also be

entered into the model. Nevertheless, an explicit assumption of all capture- recapture

models is homogeneity among birds. The eþ ects of ignoring this source of variation

can also be speculated based on what happens in traditional experimental designs Ð

if the bird-to-bird variation is larger than the within-bird variation, then the pooled

error term will be too small for the tests of treatment e þ ects (resulting in an increased

Type I error rate and too small standard errors) and too large for the test of time and

interaction eþ ects (resulting in a decrease in the power to detect such eþ ects and too

large standard errors for the time and interaction eþ ects).

The eþ ects of heterogeneity in survival and capture rates has been extensively

studied. For example, Pollock & Raveling (1982) and Nichols et al. (1982) investi-

gated the eþ ects of heterogeneity on estimates of survival in bird banding models and

found that bias induced by heterogeneity was small relative to the standard errors,

and that the standard errors were underestimated. The latter point is most crucial as

this leads to in¯ ated Type I errors. Burnham & Rexstad (1993) detected hetero-

geneity in many waterfowl datasets they examined and developed models to allow for

heterogeneity in individual survival rates. However, they conclude that `hetero-

geneity of survival probabilities is a biologically important issue, but presents great

diý culties in estimation. Successful estimation requires long-term data sets of long-

lived species with large number of marked individuals.’ Barker (1992) studied the

eþ ects of heterogeneity upon coverage of con® dence intervals and found that, for

most studies with not severe heterogeneity and less than 500 birds marked, the actual

con® dence interval coverage was close to nominal levels for individual estimates, but

could be poor for estimates of the mean survival. He concludes `The problem of

introduction of heterogeneity through data pooling also needs to be considered. . . .

Such pooling increases the likelihood of heterogeneity, and because of the increased

sample size, exacerbates the e þ ect of any heterogeneity that is present.’

Some of the heterogeneity may be caused by a failure of birds to operate indepen-

dently. For example, some species of birds form pair bonds and the fate of these

animals is closely tied. As an extreme, if a pair of birds had complete dependency,

the actual experimental unit would be the pair rather than the individual bird.

Schmutz et al. (1995) examined the e þ ects of dependency in survival rates caused,

for example, by pair bonding. Schmutz et al. (1995) used random lots (selecting one

from each member of the pair) and bootstrapping to estimate the empirical variance

and compared it with the model-based variances (including any in¯ ation factor from
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overdispersion). They found that the VIF from the standard models in Release

accounted for less than 10% of the increase in variation caused by pair bonding.

Samuel et al. (1999) recognized the potential deleterious eþ ects of pair bonding in

Lesser Snow Geese and only tagged males or females within a group of releases.

Rather than trying to model heterogeneity among birds directly, empirical

methods can be used to avoid model-based standard errors by dividing the releases

into random lots, e.g. by the ® nal digit of the tag number. Each lot is analysed

separately to obtain a set of independent estimates of each eþ ect. The ® nal estimate

is a (weighted) average of the individual estimates, and the (weighted) standard

error among random lots can be used to estimate empirically the standard error of

the estimates. In the sampling literature, this is quite commonly used and is known

as interpenetrating sub-samples. Burnham et al. (1987, Sections 4.2.3 and 4.3)

illustrate its use on a ® sh release experiment.

4.2 Factorial treatment structure; single size of e.u.; restricted randomization via blocking

Often, heterogeneity in the animals may be related to some outside factor that is

not really an experimental factor, e.g. areas of release; time of release etc. In these

cases, the experimental units (animals) may be grouped into more homogeneous

sets (called blocks). Within each block, complete randomization of animals to

treatments is done much as in the previous section. The simplest examples of these

types of block designs are often called `paired-release experiments’ , where each

`block’ has only two treatment levels.

An example of this type of design is the study by Deuel (1985) of the e þ ect of lead

upon the survival of pintails. Birds were caught in several areas of California; banded;

and sequentially assigned to the control or dosed group. Data from subsequent hunt-

ing seasons were used to estimate the survival rates. A subset of the data (limited to

® ve areas and males only) is presented in Burnham et al. (1987, Section 7.3).

This is an example of Generalized Randomized Block design (Gates, 1995). It

diþ ers from a standard randomized block design in that there are multiple experi-

mental units (birds) assigned to treatments within each block. A classical experi-

mentalist would write a model for the variation of survival rates among areas,

doses, birds, and over time as:

u i jkl 5 l + ai + d j + ad i j + bi jk + tl + atil + dt jl + adt i jl + ei jkl

where, at a minimum, adi j , bi jk and ei jkl and are random eþ ects. (Note that because

this is a block design, an implicit assumption is no interaction between blocks and

treatments; consequently, the adi j term represents experimental error.) There would

be some debate about the role of areas Ð are they ® xed or random eþ ects.

The ANOVA table would break out these sources of variation as follows

Source Error term

Block 5 Area

Dose dose 3 area

Dose 3 area 5 experimental error bird(dose 3 area)

Bird(dose 3 block)

Time Residual

Time 3 area Residual

Time 3 dose Residual

Residual
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Again notice that there are several diþ erent error terms. In the usual CJS

modelling approaches, all of these error terms are pooled and, unless they are very

small, can lead to test statistics and standard errors that may not fully re¯ ect the

various sources of variability.

In the case of a treatment structure consisting of only two treatments (so-

called `paired-release experiments’ ), the eþ ects of block experimental error can be

explicitly included and quanti® ed. Burnham et al. (1987, Section 7.3) analysed a

subset of the Deuel (1985) data, by ® rst ® nding separate estimates of the treatment

eþ ect in each block. These individual estimates will then be free of block eþ ects,

but include in their empirical variation, the ® rst experimental error variation. The

overall e þ ect can then be found as a (weighted) average of the individual estimates

from each block. An empirical variance estimate can be found from the observed

variation of the estimates over blocks. Furthermore, they also demonstrate how to

estimate this error term variation using a method-of-moments approach similar to

what is done in an ANOVA decomposition.

Unfortunately, there is no simple method than can be applied to cases with

more than two treatment levels per block unless one constructs all pairwise

contrasts. How the overall Type I error rate would be controlled is not clear at all

in this case.

Other examples of blocks are colonies or release groups (cohorts) and are often

not explicitly recognized. For example, Piper et al. (1999) studied the e þ ect of

supplementary feeding on the survival rates of vultures in two colonies 120 km

apart. These would seem to be natural blocks, but the analysis in that paper did

not include any colony eþ ect. They also state `While we have no direct evidence

that the nestlings ringed in a particular year are prone to su þ er higher or lower

mortality than those ringed in other years, we tested for this factor in our models.’

Unfortunately, if a cohort is to be treated as a block, then it cannot be `tested’

(refer to many of the articles in experimental design on the question of whether

`block eþ ects can be tested’ ). Similarly, Samuel et al. (1999) released Lesser

Snow Geese in groups but pooled the data over all groups when ® tting the ® nal

models.

4.3 Factorial treatment structure; multiple e.u.; complete randomization

Designs with multiple experimental units of diþ erent sizes are among the most

diý cult to recognize in classical experimental design and the ones most often

analysed incorrectly. The most common unrecognized design is the split-plot

design.

In these designs, factor levels are assigned to diþ erent sized experimental units.

Consequently, any analysis of these experiments must recognize the diþ erent sizes

of experimental units, and replication of the diþ erent sizes units is required in

order to perform valid statistical tests for factor eþ ects.

An example of this type of study is found in Boudjemadi et al. (1999). They

designed an ingenious experiment to investigate the e þ ects of habitat type (grass-

land or wood clearance) and connectivity of habitat fragments (connected or not

connected) upon survival and a number of variables. Within a single patch of each

habitat, four experimental enclosures were constructed, of which two were ran-

domly assigned to each connectivity level. Lizards were introduced and followed

over three sampling periods using mark- recapture methods.
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This is an example of a split-plot design. Habitat type operates on large sections

of land; connectivity operates on the enclosures within each habitat type; multiple

individuals are observed over time within each enclosure. The ANOVA table is:

Source df Error term

Habitat type 1 sections(habitat)

sections(habitat) 0 Note: there were no replicates of sections of

each habitat!

Connectivity 1 enclosure(connectivity 3 sections 3 habitat)

connectivity 3 habitat 1 enclosure(connectivity 3 sections 3 habitat)

connectivitiy 3 sections(habitat) 0

enclosure(connectivity 3 sections

3 habitat) 4

Time 2 residual

time 3 habitat 2 residual

time 3 sections(habitat) 0

time 3 connectivity 2 residual

time 3 connectivity 3 habitat 2 residual

Residual 8

Note that this experiment ® rst su þ ers from pseudo-replication as there were no

true replicates of the habitat typeÐ only a single section of each type was used.

Inferences are limited to diþ erences between these two particular sectionsÐ their

eþ ects are totally confounded with that of habitat type. Connectivity operates on

the enclosure level and so a test of connectivity e þ ects must be performed relative

to the variation among enclosures. Finally, time operates on the individual lizard.

There are two sizes of experimental units (sections and enclosures) and lizards are

observation units within the lowest experimental unit.

In their paper, the authors do a pooled analysis using SURGE with eþ ects for

habitat, connectivity and time but only a single source of variation. As in past

examples, this residual variation will be a pooling of the three error variances from

above and may not be appropriate for testing particular factors.

Similarly, Horak & Lebreton (1998) examined the e þ ects of habitat (urban or

rural), sex and time upon the survival of adult Great Tits. In classical experimental

design literature, this is again a split-plot design with habitat operating on the main

plot experimental units (replicates of habitat types), gender operating on the sub-

plot units (individual birds), and time being a repeated measure on each bird. As

in the above example, there were no true replicates of habitat type (i.e. the

experiment pseudo-replicated this factor). Various models were ® t in SURGE with

considerable underdispersion present (but, as noted by the authors, this may have

been an artefact of the sparse data).

These problems can also occur in `natural experiments’ . For example, Franklin

et al. (1999) describe a meta-analysis of survival rates of the northern spotted

owl. There were 15 study areas in the Paci® c Northwest that were divided

into four broad ecological provinces, or land ownership categories. Here, the

experimental unit for ecological province is the study areaÐ it is likely that local -

conditions within each study area in¯ uence the survival rates of the individual birds

within the study area. The observational unit within each study area is the bird.

The classical ANOVA table for this experiment for a simple model that included
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province e þ ects, local study area eþ ects, and simple time eþ ects upon survival

would look like:

Source Error term

Province area(province)

area(province) bird(area 3 province)

Time residual

time 3 province residual

time 3 area(province)

residual

Tests for province eþ ects should use the variation of the survival rates among the

area as an error term. Franklin et al. (1999) ® rst ® t individual CJS models to each

study area but conducted a meta-analysis by combining all data and ® tting CJS

models incorporating ecological provinces or ownership status as a simple factor

in the linear model but treating all birds as the individual experimental units. They

found that one model that included ownership eþ ects was close to, but not, the

best model in the AIC hierarchy. They also found moderate overdispersionÐ this

may be caused by the pooling of the variation from the various sources.

4.4 An Incomplete block design

Burnham et al. (1987) reports on an experiment by Bellrose (1959) involving the

eþ ects of diþ erent lead dose upon the survival of mallards. There were a total of

four dose levels (control, 1, 2 or 4 pellets). In each year (a block), a `paired-release’

experiment was performed that compared the eþ ect of a dose of lead and a control

group that received no lead. This is an example of an incomplete-block experiment

as not all treatments occurred in every block. Burnham et al. (1987) analysed this

experiment by estimating the diþ erence in survival for each block (i.e. the contrast

between the control group and the experimental group). This is equivalent to an

inter-block analysis. However, the analysis of incomplete block designs can also

recover intra-block information. Both estimates are then combined using appro-

priate weights. A combined inter- and intra-block analysis can be ® t by ® tting a

more complex model. As in previous examples, this model has no counterpart in

the models ® t by SURGE, POPAN, or MARK.

4.5 Random eþ ect models

Another area of divergence between classical experimental design and capture-

recapture studies is the distinction between ® xed and random eþ ects. Burnham

(2001) has recently developed a model where the time eþ ects upon survival are to

be treated as random eþ ects around a long term mean, but there has been little

work where other factors in the model could be treated as random eþ ects. For

example, Hastings & Wardtesta (1998) performed a capture- recapture study on

seal populations and were interested in the diþ erential e þ ects of birth colonies,

which change location from year to year. Here, birth colony would naturally be

treated as a random eþ ect. In some cases, cohort eþ ects, i.e. animals all born in a

single year, could also be considered random eþ ect. In the study of Franklin et al.

(1999), there were several study sites within each land classi® cation, but these

should likely be considered as a `sample’ taken from all possible sites under each
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classi ® ciation Ð again a random eþ ect. Furthermore, Burnham & Anderson (1998,

Section 6.7.6) indicate that there are serious problems in using AIC in model

selection with random coeý cient models.

5 Discussion

Conceptualizing capture- recapture experiments in terms of an experimental design

has the distinct advantage of forcing the experimenter to pay special attention to

the question of experimental units; treatment structure; and randomization struc-

ture. In the past, this was diý cult to do because data were typically collected and

displayed as summary statisticsÐ however, with the recent emphasis on the indi-

vidual capture histories, these experiments can be more closed matched with

standard designs. Skalski & Robson (1992) illustrate many of these points when

comparing abundance at speci® c points in time.

It appears that the above examples can be broken into two relatively distinct

casesÐ single size experimental units and multiple sizes of experimental units.

In the case of a single sized experimental unitÐ the animal itselfÐ the key issue

appears to be the e þ ect of pooling various sources of heterogeneity in survival

ratesÐ some recognized (e.g. bird-to-bird variation) and some unrecognized (block-

to-block) variation. This often leads to overdispersion in the counts of the observed

capture-histories. This leads to poor performance of unmodi® ed AIC-based model

selection methods (Anderson et al. 1994). Fortunately, Anderson et al. (1994) also

show that simple corrections to AIC based on the estimation of the overdispersion

factor seem to perform well. Alternatively, a relatively simple method involving

interpenetrating subsampling (random groups of birds) can be used to estimate

empirically the true variance. However, as Anderson et al. (1994) point out, the

use of a single overdispersion factor is only an approximationÐ it may be that this

overcorrects for estimates of time eþ ects (within bird e þ ects) and undercorrects

for estimates of treatment e þ ects (among bird e þ ects). This needs to be investigated

further.

Multiple sized experimental unit studies are problematic. Unfortunately, I do

not believe that these problems can be corrected with a simple multiplicative

factorÐ the problem is that there is no provision within the current modelling

software for diþ erent sizes of experimental units. As a stop-gap measure, individual

estimates of survival can be found for each larger sized experimental unit, extracted

from the software packages, and analysed further using the ANOVA package.

Although the lower level estimates (e.g. individual yearly survival estimates) are

not independent within each larger experimental unit, estimates across units will

be independent. Fortunately, simple eþ ects of factors applied to the larger units

only rely upon the `average’ of lower level eþ ects (regardless of the lower level

covariance structure) and hence should give approximate tests until more suitable

software can be developed. This stopgap measure is ineý cient and does not deal

with nuisance parameters such as capture-rates that might or might not vary among

the experimental units. A general approach would be one where the separate eþ ects

of primary (e.g. survival) and nuisance (e.g. capture) parameters and the estimation

of eþ ects under additive, interactive, and other model structures would be

preferable.

It is now almost 20 years since Hurlbert (1984) published his paper on pseudo-

replication in ® eld studies. Unfortunately, this still occurs in many studies. I suspect

it is simply diý cult to recognize the diþ erence between the experimental and
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observational unit, particularly when most of mark- recapture methods are so

tightly tied to the individual animal. As such, it is very simple to fail to recognize

pseudo-replication in the larger experimental units.

Lastly, further work needs to done on incorporating random eþ ects into models

for other than the temporal component. Coull & Agresti (1999) propose a mixed

logit model that is very similar to the normal theory mixed eþ ect models of

experimental design that could be modi® ed to incorporate random blocks.

Burnham & Anderson (1998, Section 6.7.6) indicate that shrinkage estimators

may be a pragmatic way to ® t random coeý cient models. Under this approach, a

model is ® t treating all random coeý cients as ® xed eþ ects; these estimates are

shrunk towards zero; and the likelihood is re-evaluated at these shrunken estimates.

Alternatively, a full Bayesian approach could be developed generalizing the work

of Brooks et al. (2000), Chavez-Demoulin (1999), Dupuis (1995), and Vounatsou

& Smith (1995).

Acknowledgements

This work was funded by a Research Grant from the Natural Science and

Engineering Research Council (NSERC) of Canada.

REFERENCES

Aebischer, N. J. (1995) Investigating the eþ ects of hunting on the survival of British pigeons and doves

by analysis of ringing recoveries, Journal of Applied Statistics, 22, pp. 923- 934.

Anderson, D. R., Burnham, K. P. & White, G. C. (1994) AIC model selection in overdispersed

capture- recapture data, Ecology, 75, pp. 1780 - 1793 .

Barker, R. J. (1992 ) E þ ect of heterogeneous survival on bird-banding con® dence interval coverage

rates, Journal of Wildlife Management, 56, pp. 111- 116.

Bellrose, F. C. (1959) Lead poisoning as a mortality factor in waterfowl populations, Illinois Natural

History Survey Bulletin, 27, pp. 235 - 288.

Boudjemadi, K., Lecomte, J. & Clobert, J. (1999) In¯ uence of connectivity on demography and

dispersal in two contrasting habitats: an experimental approach, Journal of Animal Ecology, 68,

pp. 1207- 1224.

Brooks, S. P., Catchpole, E. A. & Barry, S. C. (2000 ) On the Bayesian analysis of ring-recovery

data, B iometrics, 56, pp. 951 - 960.

Burnham, K. P. (2001 ) Random eþ ect models in ringing and capture- recapture data, Journal of

Agricultural, B iological, and Environmental Statistics, in press.

Burnham, K. P. & Rexstad, E. A. (1993) Modeling heterogeneity in survival rates of banded waterfowl,

B iometrics, 49, pp. 1194- 1208 .

Burnham, K. P., Anderson, D. R., White, G. C., Brownie, C. & Pollock, K. H. (1987 ) Design and

analysis methods for ® sh survival experiments based on release-recapture, American Fisheries Society

Monograph, 5.

Burnham, K. P. & Anderson, D. A. (1998) Model selection and inference Ð a practical information-theoretic

approach. (New York, Springer).

Chavez-Demoulin, V. (1999) Bayesian inference for small-sample capture- recapture data, B iometrics,

55, pp. 727- 731.

Coull, B. A. & Agresti, A. (1999) The use of mixed logit models to re¯ ect heterogeneity in capture-

recapture studies, B iometr ics, 55, pp. 294- 301.

Deuel, B. (1985) Experimental lead poisoning of northern pintails in California, California Fish and

Game, 71, pp. 125- 128.

Dupuis, J. A. (1995) Bayesian estimation of movement and survival probabilities from capture- recapture

data, B iometrika, 82, pp. 761- 772.

Fisher, R. A. (1935 ) The Design of Experiments. (Edinburgh, Oliver and Boyd).

Franklin, A. B., Burnham, K. P., White, G. C, Anthony, R. J., Forsman, E. D, Schwarz, C. J.,

Nichols, J. D. & Hines, J. E. (1999) Range-wide status and trends in northern spotted owl



Real and quasi-experiments in capture- recapture studies 473

populations. Prepared for Bureau of Land Management, US Fish and Wildlife Service, and US

Forest Service, 71pp.

Gates, C. E. (1995) What really is experimental error in block designs, American Statistician, 49,

pp. 362 - 363.

Green, R. H. (1979 ) Sampling Design and Statistica l Methods for Environmental B iologists (New York,

Wiley).

Hastings, K. K. & Wardtesta, J. (1998 ) Maternal and birth colony eþ ects on the survival of Weddell

seal oþ spring from McMurdo Sound, Antarctica, Journal of Animal Ecology, 67, pp. 722 - 740.

Hill, A, B. (1971) Principles of Medical Statistics, 9th edn (New York, Oxford University Press).

Horak, P. & Lebreton, J.-D. (1998 ) Survival of adult Great Tits (Parus major) in relation to sex and

habitat: a comparison of urban and rural populations, Ibis, 140, pp. 205- 209.

Hurlbert, S. H. (1984) Pseudoreplication and the design of ecological ® eld experiments, Ecological

Monographs, 54, pp. 187- 211.

Lebreton , J.-D., Burnham, K. P., Clobert, J. & Anderson, D. R. (1992 ) Modelling survival and

testing biological hypotheses using marked animals. A uni® ed approach with case studies, Ecological

Monographs, 62, pp. 67- 118.

Nichols, J. D., Stokes, S. L., Hines, J. E., & Conroy, M. E. (1982) Additional comments on the

assumptions of homogeneous survival rates in modern bird banding estimation models, Journal of

Wildlife Management, 46, pp. 953- 960.

Piper, S. E., Boshoff, A. F. & Scott, H. A. (1999 ) Modelling survival rates in the Cape Griþ on

(Gyps coprotheres) with emphasis on the eþ ect of supplementary feeding, B ird Study, 46 (suppl),

pp. S230- S238.

Pollock, K. H. & Raveling, D. G. (1982) Assumptions of modern band-recovery models with

emphasis on heterogeneous survival rates, Journal of Wildlife Management, 46, pp. 88 - 98.

Skalski, J. R. & Robson, D. S. (1992) Techniques for Wildlife Investigations (New York, Academic Press).

Samuel, M. D., Takekawa, J. Y., Baranyuk, V. V. & Orthmeyer , D. L. (1999) Eþ ects of avian cholera

on survival of Lesser Snow Geese (Anser caerulescens): an experimental approach, B ird Study, 46

(suppl), pp. S239- S247.

Schmutz, J. A., Ward, D. H., Sedinger, J. S. & Rexstad, E. A. (1995 ) Survival estimation and the

eþ ects of dependency among animals, Journal of Applied Statistics, 22, pp. 673 - 681.

Stewart-Oaten, A. & Murdoch, W. M. (1986) Environmental impact assessment: `pseudoreplication’

in time? Ecology, 67, pp. 929- 940.

Underwood, A. J. (1993) Things environmental scientists (and statisticians) need to know to receive

and (and give) better statistical advice. In: D. J. Fletcher & B. F. J. Manly (Eds) Statistics in Ecology

and Environmental Monitoring (Dunedin, New Zealand, Otago Conference Series), 2, pp. 33 - 61

Underwood, A. J. (1994) On beyond BACI: sampling designs that might reliably detect environmental

disturbances, Ecological Applications, 4, pp. 3 - 15.

Vounatsou, P. & Smith, A. F. M. (1995) Bayesian analysis of ring-recovery data via Markov chain

Monte Carlo simulation, B iometrics, 51, pp. 687- 708.


